頑健な推定方法(アウトプット)

      Source |       SS       df       MS              Number of obs =      30
-------------+------------------------------           F(  1,    28) = 2698.46
       Model |  100148.521     1  100148.521           Prob > F      =  0.0000
    Residual |  1039.17062    28  37.1132363           R-squared     =  0.9897
-------------+------------------------------           Adj R-squared =  0.9894
       Total |  101187.692    29  3489.23074           Root MSE      =  6.0921

------------------------------------------------------------------------------
          cp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          yd |   .8957558   .0172438    51.95   0.000     .8604336     .931078
       _cons |  -11.42457    3.66786    -3.11   0.004    -18.93784   -3.911295
------------------------------------------------------------------------------

. dwstat;
Durbin-Watson d-statistic(  2,    30) =  .1703267

.  /* Durbin Watson Test */
> hettest;

Cook-Weisberg test for heteroskedasticity using fitted values of cp
     Ho: Constant variance
         chi2(1)      =      0.93
         Prob > chi2  =      0.3339

. /* Cook-Weisberg test for heteroskedasticity */
> ovtest;

Ramsey RESET test using powers of the fitted values of cp
       Ho:  model has no omitted variables
                  F(3, 25) =     51.55
                  Prob > F =      0.0000

.  /* Ramsey RESET 4 */
> prais cp yd;
Iteration 0:  rho = 0.0000
Iteration 1:  rho = 0.8888
Iteration 2:  rho = 0.9404
Iteration 3:  rho = 0.9538
Iteration 4:  rho = 0.9572
Iteration 5:  rho = 0.9581
Iteration 6:  rho = 0.9583
Iteration 7:  rho = 0.9583
Iteration 8:  rho = 0.9583
Iteration 9:  rho = 0.9583
Iteration 10:  rho = 0.9583

Prais-Winsten AR(1) regression -- iterated estimates

      Source |       SS       df       MS              Number of obs =      30
-------------+------------------------------           F(  1,    28) =   31.36
       Model |  182.633882     1  182.633882           Prob > F      =  0.0000
    Residual |  163.042912    28  5.82296116           R-squared     =  0.5283
-------------+------------------------------           Adj R-squared =  0.5115
       Total |  345.676795    29  11.9198895           Root MSE      =  2.4131

------------------------------------------------------------------------------
          cp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          yd |   .8404458   .0427162    19.68   0.000     .7529455     .927946
       _cons |   2.705897   10.72644     0.25   0.803    -19.26621      24.678
-------------+----------------------------------------------------------------
         rho |   .9583424
------------------------------------------------------------------------------
Durbin-Watson statistic (original)    0.170327
Durbin-Watson statistic (transformed) 1.194382

.  /* Iterative GLS */
> regress cp yd, robust;

Regression with robust standard errors                 Number of obs =      30
                                                       F(  1,    28) = 2972.07
                                                       Prob > F      =  0.0000
                                                       R-squared     =  0.9897
                                                       Root MSE      =  6.0921

------------------------------------------------------------------------------
             |               Robust
          cp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          yd |   .8957558   .0164308    54.52   0.000     .8620988    .9294129
       _cons |  -11.42457   3.777366    -3.02   0.005    -19.16215   -3.686983
------------------------------------------------------------------------------

.  /* White Robust SE */
> newey cp yd, lag(0) ;

Regression with Newey-West standard errors          Number of obs  =        30
maximum lag : 0                                     F(  1,    28)  =   2972.07
                                                    Prob > F       =    0.0000

------------------------------------------------------------------------------
             |             Newey-West
          cp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          yd |   .8957558   .0164308    54.52   0.000     .8620988    .9294129
       _cons |  -11.42457   3.777366    -3.02   0.005    -19.16215   -3.686983
------------------------------------------------------------------------------

.    /* No Autocorrelation in Error */
> newey cp yd, lag(2);

Regression with Newey-West standard errors          Number of obs  =        30
maximum lag : 2                                     F(  1,    28)  =   1199.36
                                                    Prob > F       =    0.0000

------------------------------------------------------------------------------
             |             Newey-West
          cp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          yd |   .8957558   .0258651    34.63   0.000     .8427735    .9487381
       _cons |  -11.42457   5.941265    -1.92   0.065     -23.5947    .7455642
------------------------------------------------------------------------------

.     /* 2nd order autocorrelation in Error */