頑健な推定方法(アウトプット)
Source | SS df MS Number of obs = 30 -------------+------------------------------ F( 1, 28) = 2698.46 Model | 100148.521 1 100148.521 Prob > F = 0.0000 Residual | 1039.17062 28 37.1132363 R-squared = 0.9897 -------------+------------------------------ Adj R-squared = 0.9894 Total | 101187.692 29 3489.23074 Root MSE = 6.0921 ------------------------------------------------------------------------------ cp | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- yd | .8957558 .0172438 51.95 0.000 .8604336 .931078 _cons | -11.42457 3.66786 -3.11 0.004 -18.93784 -3.911295 ------------------------------------------------------------------------------ . dwstat; Durbin-Watson d-statistic( 2, 30) = .1703267 . /* Durbin Watson Test */ > hettest; Cook-Weisberg test for heteroskedasticity using fitted values of cp Ho: Constant variance chi2(1) = 0.93 Prob > chi2 = 0.3339 . /* Cook-Weisberg test for heteroskedasticity */ > ovtest; Ramsey RESET test using powers of the fitted values of cp Ho: model has no omitted variables F(3, 25) = 51.55 Prob > F = 0.0000 . /* Ramsey RESET 4 */ > prais cp yd; Iteration 0: rho = 0.0000 Iteration 1: rho = 0.8888 Iteration 2: rho = 0.9404 Iteration 3: rho = 0.9538 Iteration 4: rho = 0.9572 Iteration 5: rho = 0.9581 Iteration 6: rho = 0.9583 Iteration 7: rho = 0.9583 Iteration 8: rho = 0.9583 Iteration 9: rho = 0.9583 Iteration 10: rho = 0.9583 Prais-Winsten AR(1) regression -- iterated estimates Source | SS df MS Number of obs = 30 -------------+------------------------------ F( 1, 28) = 31.36 Model | 182.633882 1 182.633882 Prob > F = 0.0000 Residual | 163.042912 28 5.82296116 R-squared = 0.5283 -------------+------------------------------ Adj R-squared = 0.5115 Total | 345.676795 29 11.9198895 Root MSE = 2.4131 ------------------------------------------------------------------------------ cp | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- yd | .8404458 .0427162 19.68 0.000 .7529455 .927946 _cons | 2.705897 10.72644 0.25 0.803 -19.26621 24.678 -------------+---------------------------------------------------------------- rho | .9583424 ------------------------------------------------------------------------------ Durbin-Watson statistic (original) 0.170327 Durbin-Watson statistic (transformed) 1.194382 . /* Iterative GLS */ > regress cp yd, robust; Regression with robust standard errors Number of obs = 30 F( 1, 28) = 2972.07 Prob > F = 0.0000 R-squared = 0.9897 Root MSE = 6.0921 ------------------------------------------------------------------------------ | Robust cp | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- yd | .8957558 .0164308 54.52 0.000 .8620988 .9294129 _cons | -11.42457 3.777366 -3.02 0.005 -19.16215 -3.686983 ------------------------------------------------------------------------------ . /* White Robust SE */ > newey cp yd, lag(0) ; Regression with Newey-West standard errors Number of obs = 30 maximum lag : 0 F( 1, 28) = 2972.07 Prob > F = 0.0000 ------------------------------------------------------------------------------ | Newey-West cp | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- yd | .8957558 .0164308 54.52 0.000 .8620988 .9294129 _cons | -11.42457 3.777366 -3.02 0.005 -19.16215 -3.686983 ------------------------------------------------------------------------------ . /* No Autocorrelation in Error */ > newey cp yd, lag(2); Regression with Newey-West standard errors Number of obs = 30 maximum lag : 2 F( 1, 28) = 1199.36 Prob > F = 0.0000 ------------------------------------------------------------------------------ | Newey-West cp | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- yd | .8957558 .0258651 34.63 0.000 .8427735 .9487381 _cons | -11.42457 5.941265 -1.92 0.065 -23.5947 .7455642 ------------------------------------------------------------------------------ . /* 2nd order autocorrelation in Error */