最尤法(回帰分析の例)数値計算(スコアリング法、1階導関数+ヘッシアン行列の期待値必要)
プログラム
// Maximum Likelihood Estimation
// Numerical Result using Scoring method
#include<oxstd.h>
#include<oxfloat.h> // to use M_2PI
#import<maximize> // to use maximization package
static decl s_mX, s_vY; // static variable to use in the functions
// Loglikelihood Function
fLoglik(const vP, const adFunc, const avScore, const amHess)
{
decl ck,cnobs;decl dsum,dsig2;decl vb,vg,ve;
cnobs=rows(s_vY);ck=rows(vP);
vb=vP[0:ck-2];dsig2=vP[ck-1];ve=s_vY-s_mX*vb;
dsum=-sumsqrc(ve)/(2*dsig2);
adFunc[0]=-0.5*cnobs*log(M_2PI*dsig2)+dsum;
if(avScore) // provides analytical 1st derivative
{
(avScore[0])[0:ck-2]=s_mX'*ve/dsig2;
(avScore[0])[ck-1]=-0.5*cnobs/dsig2+sumsqrc(ve)/(2*dsig2^2);
}
if(amHess) // provides expected value of hessian matrix
{
(amHess[0])=zeros(ck,ck);
(amHess[0])[0:ck-2][0:ck-2]=-s_mX'*s_mX/dsig2;
(amHess[0])[ck-1][ck-1]=-cnobs/(2*dsig2^2);
}
return 1;
}
main()
{
decl ck,cnobs; // scalar (count, number of ...)
decl dfunc,ds2,dssr; // scalar (double)
decl minvhess,mi,msigma; // matrix
decl vb,ve,vp,vpvalue,vse,vyhat,vzvalue; // vector
println("Maximum Likelihood Esimation using scoring method.");
s_mX=<0;1;2;3;4>; // X matrix: independent variable
s_mX=ones(5,1)~s_mX; // + constant term
s_vY=<10;20;20;30;40>; // Y vector: dependent variable
cnobs=rows(s_mX); // number of observations
ck=columns(s_mX)+1; // number of parameters (including constant term & sigma^2)
vp=<0;0;10>; // initial values
//
println("initial values:",vp');
// Scoring Method
vp=<0;0;10>; // initial values
MaxNewton(fLoglik,&vp,&dfunc,&minvhess,0);
// minvhess=invert(Hessian), Information matrix=-Hessian
// -mhess=invert(Information matrix)
msigma=-minvhess;
vse=sqrt(diagonal(msigma))';
vzvalue=vp./vse; // z-value for H0: parameter=0
vpvalue=tailn(fabs(vzvalue));
println("%r",{"beta0","beta1","sigma^2"},
"%c",{"est. coeff.", "std. err.","z-value", "p-value"},
"%10.6",vp~vse~vzvalue~vpvalue);
}
計算結果
Maximum Likelihood Esimation using scoring method.
initial values:
0.00000 0.00000 10.000
est. coeff. std. err. z-value p-value
beta0 10.000 1.8974 5.2705 6.8040e-008
beta1 7.0000 0.77460 9.0370 8.0544e-020
sigma^2 6.0000 3.7947 1.5811 0.056923