尤度比検定、Wald検定、LM検定 (プログラム)
// LR test, Wald test, LM test after Maximum likelihood estimation
#include<oxstd.h>
#include<oxfloat.h> // to use M_2PI
#import<maximize> // to use maximization package
static decl s_mX, s_vY; // static variable to use in the functions
// Unconstrained Loglikelihood Function
fLoglik(const vP, const adFunc, const avScore, const amHess)
{
decl ck,cnobs;decl dsum,dsig2;decl vb,ve;
cnobs=rows(s_vY);ck=rows(vP);
vb=vP[0:ck-2];dsig2=vP[ck-1];ve=s_vY-s_mX*vb;
dsum=-sumsqrc(ve)/(2*dsig2);
adFunc[0]=-0.5*cnobs*log(M_2PI*dsig2)+dsum;
if(avScore) // provides analytical 1st derivative
{
(avScore[0])[0:ck-2]=s_mX'*ve/dsig2;
(avScore[0])[ck-1]=-0.5*cnobs/dsig2+sumsqrc(ve)/(2*dsig2^2);
}
if(amHess) // provides expected value of hessian matrix
{
(amHess[0])=zeros(ck,ck);
(amHess[0])[0:ck-2][0:ck-2]=-s_mX'*s_mX/dsig2;
(amHess[0])[ck-1][ck-1]=-cnobs/(2*dsig2^2);
}
return 1;
}
// Constrained Loglikelihood Function
fLoglikC(const vP, const adFunc, const avScore, const amHess)
{
decl ck,cnobs;decl dsum,dsig2;decl vb,ve;
cnobs=rows(s_vY);ck=rows(vP);
vb=vP[0:ck-2]|1-vP[2]-vP[3];dsig2=vP[ck-1];
ve=s_vY-s_mX*vb;dsum=-sumsqrc(ve)/(2*dsig2);
adFunc[0]=-0.5*cnobs*log(M_2PI*dsig2)+dsum;
return 1;
}
main()
{
decl ck,cnobs; // scalar (count, number of ...)
decl dfunc,dlm,ds2,dssr,dloglr,dloglu,dlrt; // scalar (double)
decl mhess,mi,msigma,mx; // matrix
decl vp,vpvalue,vse,vscore,vstat,vzvalue; // vector
decl file;
// Read file
file = fopen("nerlove.asc");fscan(file,"%#m",145,5,&mx);
fclose(file); mx=log(mx);
//
println("Maximum Likelihood Esimation using BFGS method.");
s_mX=mx[][1:2]~mx[][4]~mx[][3]; // X matrix: independent variable
s_mX=ones(145,1)~s_mX; // + constant term
s_vY=mx[][0]; // Y vector: dependent variable
cnobs=rows(s_mX); // number of observations
ck=columns(s_mX)+1; // number of parameters (including constant term & sigma^2)
vp=<0;0;0;0;0;10>; // initial values
println("*************************************************");
println("Unconstrained Model");
println("*************************************************");
//
// Unconstrained maximum likelihood estimation
// y=b1+b2*x2+b3*x3+b4*x4+b5*x5
//
MaxBFGS(fLoglik,&vp,&dfunc,0,TRUE);
dloglu=dfunc; // log L (unconstrained)
vscore=zeros(ck,1); // score vector (d logL/d theta)
fLoglik(vp,&dfunc,&vscore,&mhess);
mi=-mhess;msigma=invert(mi);
vse=sqrt(diagonal(msigma))';
vzvalue=vp./vse; // z-value for H0: parameter=0
vpvalue=tailn(fabs(vzvalue));
println("%r",{"beta1","beta2","beta3","beta4","beta5","sigma^2"},
"%c",{"est. coeff.", "std. err.","z-value", "p-value"},
"%10.6",vp~vse~vzvalue~vpvalue);
// Wald Test
decl dg,vg,dwald; // g & G
dg=vp[2]+vp[3]+vp[4]-1;vg=<0,0,1,1,1,0>;
dwald=dg*invert(vg*msigma*vg')*dg;
println("*************************************************");
println("Constrained Model (B3+B4+B5=1)");
println("*************************************************");//
// Constrained maximum likelihood estimation
// y=b1+b2*x2+b3*x3+b4*x4+(1-b3-b4)*x5
//
decl vpc;
vpc=vp[0:3]|vp[5];
MaxBFGS(fLoglikC,&vpc,&dfunc,0,TRUE);
dloglr=dfunc; // log L (constrained)
Num2Derivative(fLoglikC,vpc,&mhess); // Numerical Hessian Matrix
mi=-mhess;msigma=invert(mi);
vse=sqrt(diagonal(msigma))';
vzvalue=vpc./vse; // z-value for H0: parameter=0
vpvalue=tailn(fabs(vzvalue));
println("%r",{"beta1","beta2","beta3","beta4","sigma^2"},
"%c",{"est. coeff.", "std. err.","z-value", "p-value"},
"%10.6",vpc~vse~vzvalue~vpvalue);
dlrt=-2*(dloglr-dloglu);
// LM Test
vp=vpc[0:3]|1.0-vpc[2]-vpc[3]| vpc[4];
fLoglik(vp,&dfunc,&vscore,&mhess);
mi=-mhess;msigma=invert(mi);
dlm=vscore'*msigma*vscore;
vstat= dlm | dlrt | dwald;vpvalue=tailchi(vstat,1);
println("*************************************************");
println("TEST H0:B3+B4+B5=1 vs H1:B3+B4+B5 =! 1");
println("*************************************************");
println("%r",{"LM test", "Likelihood ratio test", "Wald test"},
"%c",{"Statistic", "p-value"},
"%10.6",vstat~vpvalue);
}